In this section we will learn how to encode and decode a column of a dataframe in python pandas.
We will see an example to encode a column of a dataframe in python pandas and another example to decode the encoded column.
Encode a column of dataframe in python:
Create dataframe:
#create dataframe import pandas as pd d = {'Quarters' : ['quarter1','quarter2','quarter3','quarter4'], 'Revenue':[23400344.567,54363744.678,56789117.456,4132454.987]} df=pd.DataFrame(d) print df
Resultant dataframe will be
Encode a column Example:
Lets encode the column named Quarters and save it in the column named Quarters_encoded.
# Encode Quarters dataframe in Python df['Quarters_encoded'] = map(lambda x: x.encode('base64','strict'), df['Quarters']) print df
encode() function with codec ‘base64’ and error handling scheme ‘strict’ is used along with the map() function to encode a column of a dataframe and it is stored in the column named quarter_encoded as shown above so the resultant dataframe will be
Decode a column of dataframe in python:
We will be using the already encoded value as input to the decode function
# Decode dataframe in Python df['Quarters_decoded'] = map(lambda x: x.decode('base64','strict'), df['Quarters_encoded']) print df
Note: you should use the same encoding and error parameters (‘base64’ and ‘strict’) to decode the string.
So the output will be