Mutate Function in R (mutate, mutate_all and mutate_at) is used to create new variable or column to the dataframe in R. Dplyr package in R is provided with mutate(), mutate_all() and mutate_at() function which creates the new variable to the dataframe.
Syntax of mutate function in dplyr:
or
data_frame %>% mutate(expression(s)
We will be using iris data to depict the example of mutate() function
library(dplyr) mydata2 <-iris # Mutate function for creating new variable to the dataframe in R mydata3 = mutate(mydata2, sepal_length_width_ratio=Sepal.Length/Sepal.Width) head(mydata3)
New column named sepal_length_width_ratio is created using mutate function and values are populated by dividing sepal length by sepal width
mutate_all() Function in R
mutate_all() function in R creates new columns for all the available columns here in our example. mutate_all() function creates 4 new column and get the percentage distribution of sepal length and width, petal length and width.
library(dplyr) mydata2 <-iris # Mutate_all function for creating new variable to the dataframe in R mydata3 = mutate_all(mydata2[,-5], funs("percent"= ./100)) head(mydata3)
mutate_at() Function in R
mutate_at() function in R creates new columns for the specified columns here in our example. mutate_at() Function get the min_rank() of sepal length and sepal width .
library(dplyr) mydata2 <-iris # mutate_at() function for creating new variable to the dataframe in R mydata4 = mutate_at(mydata2, vars(Sepal.Length,Sepal.Width), funs(Rank=min_rank(desc(.)))) head(mydata4)